Simultaneous measurements of sea surface elevation and onshore and alongshore water particle velocities were measured at three locations within the surf zone using two capacitance type penetrating wave staffs and three two-component electromagnetic flow meters. The probability density functions, pdf, for the sea surface elevation were always highly positively skewed, whereas the pdf's for the velocities were both negatively and positively skewed. Mean values of the onshore and alongshore components of flow reflected the influence of a rip current frequently observed just south of the instrument locations. Strong harmonics in the spectra of sea surface fluctuations and particle velocities infer nonlinear conditions. Coherence values between waves and onshore flow were high, ranging above 0.9. The coherence between waves and onshore flow was used to separate the turbulence and wave-induced velocity components. Over the range of collapsing to spilling breakers a reasonable value for the ratio of turbulent to wave-induced velocity was determined to be approximately 0.75. Saturation regions were found in the wave and velocity energy-density spectra at higher frequencies as evidenced by -5 and -3 slopes, respectively.

Breaking the Waves

Petroleum Management

Association Internationale de Recherches Hydrauliques Assemblée Générale

Twenty-First Symposium on Naval Hydrodynamics

An Experimental Study of Breaking-wave Pressures

Eugene Sharkov, of the Space Research Institute in Moscow, has here put together the most comprehensive description of the physical findings of an investigation into the spatio-temporal characteristics of the gravity of breaking waves. He's also described the foam activity in the open sea using methods and instruments of optical and microwave remote sensing. Numerous practical
applications and illustrations are provided from air-borne, ship-borne and laboratory up-to-date experiments.

Proceedings - Institution of Civil Engineers

The Design and Construction of Harbours

Sediment Suspension by Non-breaking Waves Over Rippled Beds

Investigation of the Use of Drogues to Improve the Safety of Sailing Yachts and Life Rafts

This book fills a gap in knowledge of breaking waves and their influence on the generation of marine fluxes from ocean surfaces. Based on published data as well as on the author's experience, the text explores in detail the relationship chain of breaking waves, whitecaps coverage, rate of wave energy dissipation, amount of aerosol fluxes rising from a given sea basin, and possible seasonal variations.

Breaking Ocean Waves

In its relentless pursuit of further knowledge, science tends to compartmentalize. Over the years the pursuit of What might be called geophysical acoustics of the sea-surface has languished. This has occured even through there are well-developed and active research programs in underwater acoustics, ocean hydrodynamics, cloud and precipitation physics, and ice mechanics - to name a few - as well as a history of engineering expertise built on these scientific fields. It remained to create a convergence, a dialogue across disciplines, of mutual benefit. The central theme of the Lerici workshop, perhaps overly simplified, was 'What are the mechanisms causing ambient noise at the upper surface of the ocean?' What could hydrodynamicists contribute to a better understanding of breaking wave dynamics, bubble production, ocean wave dynamics, or near-surface turbulence for the benefit of the underwater acoustics community? What further insights could fluid dynamicists gain by including acoustic measurements in their repertoire of instrumentation? While every attendee will have his or her percepts of details, it was universally agreed that a valuable step had been taken to bring together two mature disciplines and that significant co-operative studies would undoubtedly follow. The scope of the workshop was enlarged beyond its original intent to also include the question of ice-noise generation. The success of this decision can be seen in high quality of the presentations, the contribution of its disciples in the other workshop discussions and the heightened awareness and interest of we other novices.

Petroleum Engineer

Eugene Sharkov, of the Space Research Institute in Moscow, has here put together the most comprehensive description of the physical findings of an investigation into the spatio-temporal characteristics of the gravity of breaking waves. He's also described the foam activity in the open sea using methods and instruments of optical and microwave remote sensing. Numerous practical applications and illustrations are provided from air-borne, ship-borne and laboratory up-to-date experiments.

The Civil engineer & [and] architect's journal

In the wake of WWII, a grieving fisherman submits a poem to a local newspaper: a rallying cry for hope, purpose . . . and rocks. Send me a rock for the person you lost, and I will build something life-giving. When the poem spreads farther than he ever intended, Robert Bliss's humble words change the tide of a nation. Boxes of rocks inundate the tiny, coastal Maine town, and he sets his calloused hands to work, but the building halts when tragedy strikes. Decades later, Annie Bliss is summoned back to Ansel-by-the-Sea when she learns her Great-Uncle Robert, the man who became her refuge
during the hardest summer of her youth, is now the one in need of help. What she didn't anticipate was finding a wall of heavy boxes hiding in his home. Long-ago memories of stone ruins on a nearby island trigger her curiosity, igniting a fire in her anthropologist soul to uncover answers. She joins forces with the handsome and mysterious harbor postman, and all her hopes of mending the decades-old chasm in her family seem to point back to the ruins. But with Robert failing fast, her search for answers battles against time, a foe as relentless as the ever-crashing waves upon the sea.

Ocean Waves Breaking and Marine Aerosol Fluxes

Lifestyle journalist Ella Skye remembers every celebrity she interviewed, every politician she charmed between the sheets, and every socialite who eyed her with envy. The chance meeting with her husband, Damien; their rapid free fall into love; and their low-key, intimate wedding are all locked in her memory. But what she can't remember is the tragic car accident that ripped her unborn child from her. Ella can't even recall being pregnant.

Effects of a Breakwater on Nearshore Currents Due to Breaking Waves

Acoustic Measurements of Air Entrainment by Breaking Waves

Last Summer

A screenplay about religious dogmatism and erotic obsession through which love is endowed with life-giving powers of healing, and miracles can occur. Bess is a young woman raised in a devoutly religious community in the Outer Hebrides whose life is transformed when she meets an oil-rig worker.

Side Trip

Sandy beaches represent some of the most dynamic environments on Earth and examining their morphodynamic behaviour over different temporal and spatial scales is challenging, relying on multidisciplinary approaches and techniques. Sandy Beach Morphodynamics brings together the latest research on beach systems and their morphodynamics and the ways in which they are studied in 29 chapters that review the full spectrum of beach morphodynamics. The chapters are written by leading experts in the field and provide introductory level understanding of physical processes and resulting landforms, along with more advanced discussions. Includes chapters that are written by the world's leading experts, including the latest up-to-date thinking on a variety of subject areas Covers state-of-the-art techniques, bringing the reader the latest technologies/methods being used to understand beach systems Presents a clear-and-concise description of processes and techniques that enables a clear understanding of coastal processes

A Numerical Study of Three-dimensional Breaking Waves and Turbulence Effects

This is the true narrative of a military diver and bomb disposal operator who, after a dynamic career being one of the select few British Royal Navy Mine Warfare and Clearance Diving (MCD) specialists, finds himself Far From Breaking Waves in the land locked country of Afghanistan serving as a member of the Royal Australian Navy. There are even fewer Australian MCDs. The book chronicles his time based in the dangerous war torn city of Kabul as ISAF's Chief of Counter Improvised Explosive Device Exploitation, and his voyage through an exciting adventure packed career to get there.

Proceedings

What do you do when you fall in love with your childhood best friend? Do you tell them and risk ruining the friendship? And what then, if it takes decades for them to respond to your admission?
Do you wait for an answer, hoping it will be the one you want to hear? George did. Now, thirty years on, the secrets are out in the open. But can two hearts almost destroyed by denial and separation ever be healed? Fill in the gaps by joining George and Josh on their Cornish honeymoon against an awe-inspiring backdrop of breaking waves, sand and sunshine.**** Breaking Waves is a novella-length character special. Part of Hiding Behind The Couch series. Chronologically, it falls between In The Starts Part I (Season Four) and In The Stars Part II (Season Five). **** WARNING: this story contains intimate (mildly explicit) scenes between consenting male adults.

Sandy Beach Morphodynamics

Everything We Give

Whose Waves These Are

Breaking Ocean Waves

The Breaking Waves Dashed High: (the Pilgrim Fathers)

Returning home to his family's Australian sheep station to take the place of his dead brother, Alan Duncan finds his homecoming marred by the suicide of his parents' parlor maid. After he discovers the woman was his brother's fiance, Alan sets out to piece together the tragic events.

Diurnal Variations in Visually Observed Breaking Waves

Hardbound. The INTERCOH series of conferences bring together the world's leading researchers and practitioners in cohesive sediment transport processes to share recent insights. This book presents papers that examine the spectrum of fine sediment transport related science and engineering, including the basics and applications of flocculation, settling, deposition, and erosion, advanced numerical models used in engineering practice, and applications to mud flats and harbor siltation.

Breaking and Dissipation of Ocean Surface Waves

In order to study the landslide generated waves, a moving solid algorithm is developed to describe the moving boundary condition of the slide motion on a fixed grid. The LES model is adopted to describe the three-dimensional turbulences. In total, forty five simulations are made by various slide initial elevations and weights. The numerical results are compared with the experimental data in terms of the time histories of runup and generated waves. Reasonably good agreements can be observed. The detailed discussions about complex three-dimensional flow patterns, velocity fields, free surface and shoreline deformations are presented and discussed.

Breaking Waves

Shock Pressures of Breaking Waves

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be
preserved, reproduced, and made generally available to the public. We appreciate your support of
the preservation process, and thank you for being an important part of keeping this knowledge
alive and relevant.

The treasury of David: containing an original exposition of the Book of psalms

From the Wall Street Journal bestselling author of *Everything We Keep* comes the highly anticipated
sequel. Told from one man’s two perspectives, *Everything We Left Behind* effortlessly blends
suspense, mystery, and romance in an exploration of loss, resilience, and the compelling need to
protect the ones we love at all cost. Two months before his wedding, financial executive James
Donato chased his trade-laundering brother Phil to Mexico, only to be lost at sea and presumed
dead. Six and a half years later, he emerges from a dissociative fugue state to find he’s been living
in Oaxaca as artist Carlos Dominguez, widower and father of two sons, with his sister-in-law Natalya
Hayes, a retired professional surfer, helping to keep his life afloat. But his fiancé, Aimee Tierney,
the love of his life, has moved on. She’s married and has a child of her own. Devastated, James and
his sons return to California. But Phil is scheduled for release from prison, and he’s determined to
find James, who witnessed something in Mexico that could land Phil back in confinement. Under
mounting family pressure, James flees with his sons to Kauai, seeking refuge with Natalya. As James
begins to unravel the mystery of his fractured identity, danger is never far behind, and Natalya may
be the only person he can trust.

Fort Fisher and Vicinity

Wave energy dissipation due to bubble penetration and inferred turbulent penetration from
breaking waves in the surf zone is related to the total energy of dissipation. Bubble injection is
inferred from void fraction measurements obtained using a 2.3 meter vertical array of eight
conductivity sensors extending from the bottom through the water surface. Potential energy and
dissipation associated with bubble injection are calculated and compared with total wave
dissipation. Total wave dissipation is calculated from the energy flux balance measured using an
array of seven pressure sensors in the surf zone. Percent of total wave potential energy of the
bubbles due to spilling breakers is on the order of 0.18% to 0.62%, consistent with past
measurements in the surf zone. Percent of the bubble potential energy dissipation rates to total
wave dissipation in the cross shore direction is on the order of 8% to 20%. The potential energy
dissipation is largest immediately after injection, decaying exponentially after that. Bubble potential
energy dissipation results within 1.2 seconds even for void fraction events greater than 36% and
usually in less than 1.0 seconds. Energy dissipation was found linearly related (0.95 correlation
coefficient) with the ratios of wave height to water depth, a measure of the percent of breaking
waves within the surf zone.

Sea Surface Sound

Model tests were conducted to investigate the use of drogues to improve the safety of sailing
yachts and life rafts. The tests investigated the hazard of capsize by a breaking wave. The boats
were assumed to be in a survival type storm with all sail off and not being controlled by the crew.
The models were built to a scale of 1 to 32 and were weighted to give the proper dynamic
characteristics. Two methods of breaking wave simulation were used: (1) A horizontal jet of water
discharged at the model; (2) A breaking wave formed by the wake of a towed boat. A mathematical
model was prepared which first simulated the motion of the boat-drogue system in non-breaking
waves and then simulated a breaking wave strike. The tests indicated that the hazard of breaking
wave capsize could be greatly reduced by the use of a properly engineered drogue. However, a
systematic investigation of the parameters affecting the boat/drogue system, i.e. loads on the boat
and drogue, line elasticity, wind and wave forces, has yet to be undertaken. More study and testing
is required before a specific design can be recommended. (Author).

All the Breaking Waves

Everything We Left Behind
Coastal and Estuarine Fine Sediment Processes

From the bestselling author of "Everything We Keep" comes a gripping tale of long-buried secrets, the strength of forgiveness, and the healing power of returning home for good. After a harrowing accident tore her family apart, Molly Brennan fled from the man she loved and the tragic mistake she made. Twelve years later, Molly has created a new life for herself and her eight-year-old daughter, Cassie. The art history professor crafts jewelry as unique and weathered as the surf-tumbled sea glass she collects, while raising her daughter in a safe and loving environment something Molly never had. But when Cassie is plagued by horrific visions and debilitating nightmares, Molly is forced to return to the one place she swore she'd never move back to home to Pacific Grove. A riveting exploration of love, secrets, and motherhood, "All the Breaking Waves" is the poignant story of a woman who discovers she must confront her past, let go of her guilt, and summon everything in her power to save her daughter.

Bubble Injection Under Breaking Waves

Everything We Give is the final novel of the bestselling Everything Series. Award-winning photographer Ian Collins made only one mistake in life, but it cost his mother her freedom and destroyed their family, leaving Ian to practically raise himself. For years he's been estranged from his father, and his mother has lived off the grid. For just as long, he has searched for her. Now, Ian seemingly has it all—national recognition for his photographs; his loving wife, Aimee; and their adoring daughter, Caty. Only two things elude him: a feature in National Geographic and finding his mother. When the prized magazine offers him his dream project on the same day that Aimee's ex-fiancé, James, returns bearing a message for Ian but putting a strain on his marriage, Ian must make a choice: chase after a coveted assignment or reconnect with a mysterious woman who might hold the key to putting his past to rest. But the stakes are high, because Ian could lose the one thing he holds most dear: his family.

Far from Breaking Waves

An unforgettable and breathtaking novel of love, loss, and the unexpected routes that life takes from Amazon Charts and Wall Street Journal bestselling author Kerry Lonsdale. With her deceased sister's Route 66 bucket list in hand, California girl Joy Evers sets out on a cross-country road trip to meet up with her fiancé, checking off the bullets along the way. Singer-songwriter Dylan Westfield has a serious case of wanderlust and a broken-down car. Stuck at a diner between LA and Flagstaff, he meets Joy, his complete opposite. She's energetic. He's moody. She's by the book. He's spontaneous. She believes in love at first sight. He thinks love is a complicated mess. But Joy has a brand-new convertible. They strike a deal. She'll drive him to New York. He'll pay for gas. Only three rules apply: no exchanging of last names; what happens on the road, stays on the road; and if one of them wants to take a side trip, they both must agree. A heart-stirring love story that spans a decade, Side Trip explores what-if. What if Joy and Dylan had exchanged last names? What if he'd told her she made him believe love was worth the risk? And what if they hadn't made that second deal when they couldn't say goodbye?

Annales Geophysicae

Breaking Waves

Wave breaking represents one of the most interesting and challenging problems for fluid mechanics and physical oceanography. Over the last 15 years our understanding has undergone a dramatic leap forward, and wave breaking has emerged as a process whose physics is clarified and quantified. Ocean wave breaking plays the primary role in the air-sea exchange of momentum, mass and heat, and it is of significant importance for ocean remote sensing, coastal and ocean engineering, navigation and other practical applications. This book outlines the state of the art in our understanding of wave breaking and presents the main outstanding problems. It is a valuable resource for anyone interested in this topic: researchers, modellers, forecasters, engineers and graduate students in physical oceanography, meteorology and ocean engineering.
The Kinematics of Breaking Waves in the Surf Zone

Copyright code: e6cab645e6719a0e5607285fc7c12b94